Minggu, 20 Maret 2011

Glikogenolisis

Glikogenolisis berlangsung dengan jalur yang berlainan. Dengan adanya enzim fosforilase, fosfat anorganik melepaskan sisa glukose non mereduksi ujung dalam satu persatu untuk menghasilkan D-glukose fosfat 1-fosfat. Proses glikogenolisis merupakan proses pemecahan glikogen yang berlangsung lewat jalan yang berbeda, tergantung pada proses yang mempengaruhinya. Molekul glikogen menjadi lebih kecil atau lebih besar, tetapi jarang apabila ada molekul tersebut dipecah secara sempurna. Meskipun pada hewan, glikogen tidak pernah kosong sama sekali. Inti glikogen tetap ada untuk bertindak sebagai aseptor bagi glikogen baru yang akan disintesis bila diperoleh cukup persediaan karbohidrat. Sekitar 85% D-glukose 1-fosfat, sedang 15% dalam bentuk glukose bebas (Montgomery et al., 1983).

Proses pada saat makan, hati dapat menarik simpanan glikogennya untuk memulihkan glukosa di dalam darah (glikogenolisis) atau dengan bekerja bersama ginjal, mengkonversi metabolit non karbohidrat seperti laktat, gliserol dan asam amino menjadi glukosa. Upaya untuk mempertahankan glukosa dalam konsentrasi yang memadai di dalam darah sangat penting bagi beberapa jaringan tertentu, glukosa merupakan bahan bakar yang wajib tersedia, misalnya otak dan eritrosit (Murray et al., 2000).

Proses dimulai dengan molekul glukosa dan diakhiri dengan terbentuknya asam laktat. Serangkaian reaksi-reaksi dalam proses glikolisis tersebut dinamakan jalur Embeden-Meyerhof. Reaksi-reaksi yang berlangsung pada proses glikolisis dapat dibagi dalam dua fase. Pada fase pertama glukosa diubah menjadi triosafosfat dengan proses fosforilasi. Fase kedua dimulai dari proses oksidasi triosafosfat hingga terbentuk asam laktat. Perbedaan antara kedua fase ini terletak pada aspek energi yang berkaitan dengan reaksi-reaksi dalam kedua fase tersebut (Poedjiadi, 1994).

Terdapat tiga jalur penting yang dapat dilalui piruvat setelah glikolisis. Pada organisme aerobik, glikolisis menyusun hanya tahap pertama dari keseluruhan degradasi aerobik glukosa menjadi CO2 dan H2O. Piruvat yang terbentuk kemudian dioksidasi dengan melepaskan gugus karboksilnya sebagai CO2, untuk membentuk gugus asetil pada asetil koenzim A. Lalu gugus asetil dioksidasi sempurna menjadi CO2 dan H2O oleh siklus asam sitrat, dengan melibatkan molekul oksigen. Lintas inilah yang dilalui piruvat pada hewan aerobik sel dan tumbuhan (Leehninger, 1991).

Glukosa dimetabolisasi menjadi piruvat dan laktat di dalam semua sel mamalia melalui lintasan glikolisis. Glukosa merupakan substrat yang unik karena glikolisis bisa terjadi dalam keadaan tanpa oksigen (anaerob), ketika produk akhir glukosa tersebut berupa laktat. Meskipun demikian, jaringan yang dapat menggunakan oksigen (aerob) mampu memetabolisasi piruvat menjadi asetil koenzim A, yang dapat memasuki siklus asam sitrat untuk menjalani proses oksidasi sempurna menjadi CO2 dan H2O dengan melepasan energi bebas dalam bentuk ATP, pada proses fosforilasi oksidatif (Murray et al., 2000).

Daftar Pustaka

Lehninger, A.L. 1991. Dasar-dasar Biokimia. Jilid 2. Erlangga. Jakarta

Montgomery, R., R.L. Dryer, T.W. Conway and A.A. Spector. 1983. Biokimia. Jilid 1. Gadjah Mada University Press. Yogyakarta.

Murray, R.K., D.K. Granner, P.A. Mayes and V.W. Rodwell. 2000. Biokimia Harper. Edisi 25. Buku Kedokteran. EGC. Jakarta.

Poedjiadi, A. 1994. Dasar-dasar Biokimia. UI Press. Jakarta.

Gambar: google.com

2 komentar:

spirit lion mengatakan...

mantap..
izin kopi ya....

dinanti kunjungan baliknya...
http://abadiorkes.blogspot.com/

Eki Maura mengatakan...

copy aja. kita saling tukar informasi.

Posting Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Powered by Blogger